

Refactoring Policy for Compositional Generalizability using Self-Supervised Object Proposals

Tongzhou Mu*, Jiayuan Gu*, Zhiwei Jia, Hao Tang, Hao Su

Compositional Generalization

Generalize?

Challenges of Classical RL

Optimization Challenge

Training environments

Neural Network

Challenges of Classical RL

Generalization Challenge

Neural Network Test environments

Refactorization

Demonstration Acquisition without Generalizability Concerns

Refactorization

Strong inductive bias for generalization

Refactorize Demonstration into Compositional Generalizable Policy

Object-centric Policy

Strong inductive bias: Object-centric Scene Graph

Experiments

- Flexible number of objects
- Random object arrangement
- Composition of foreground/background

Multi-MNIST

FallingDigit

BigFish

Multi-MNIST

Object-centric graph can be a strong inductive bias for compositional generalizability

Training Set

Test Set

Method	Train Acc	Test Acc
CNN	90.5(2.9)	12.0(2.1)
Relation Net	96.4(0.8)	8.4(4.7)
Ours	80.2(0.2)	51.2(1.2)

FallingDigit

The student network with object-centric graph inductive bias can refactorize the teacher policy into a compositional generalizable policy

Train on 3 digits

CNN-based RL policy fails to generalize to 9 digits

GNN-based refactorized policy generalizes to 9 digits

BigFish

More robust to different composition of foreground and background

Training Environments

Test Environments

Conclusion

- Refactorization through a proper student network with strong inductive bias can ease optimization and achieve compositional generalizability.
- In difficult environments with sophisticated reasoning, long-range interaction, or unfamiliar background, GNN-based student policy shows stronger performance and robustness.
- We implement an effective object-centric policy learning framework with an improved self-supervised object detector.

Thank you!