
Supplementary Material of
Refactoring Policy for Compositional Generalizability

using Self-Supervised Object Proposals

Tongzhou Mu1⇤ Jiayuan Gu1⇤ Zhiwei Jia1 Hao Tang2 Hao Su1

1University of California, San Diego 2Shanghai Jiao Tong University
{t3mu,jigu,zjia,haosu}@eng.ucsd.edu tanghaosjtu@gmail.com

1 Overview

This supplementary material includes implementation details relevant to network architectures and
hyperparameters, as well as additional experiments to analyze the robustness of our two-stage
framework. Sec 2 illustrates our improvements made to SPACE [12]. Sec 3, 4, 5, and 6 describe the
network architectures and hyperparameters used in our experiments on Multi-MNIST, FallingDigit,
BigFish, and Pacman, respectively. A robustness analysis is presented in Sec 7, where we also show
the advantages of our two-stage framework over end-to-end training object-centric GNNs by RL.

2 Improvements of SPACE

In this section, we provide a recap of SPACE [12] along with the improvements. We refer readers to
the original paper for more complete explanation. SPACE is a unified probabilistic generative model
that combines both the spatial-attention (foreground) and scene-mixture (background) models. It
assumes that an image (or scene) can be decomposed into foreground and background latents: zfg

and z
bg. The foreground z

fg consists of a set of independent foreground objects zfg = {z
fg
i }

N
i=1.

The observed image x is modeled as a sample from the pixel-wise Gaussian mixture model, which is
a combination of foreground and background image distributions, as illustrated in Eq 1.

p✓(x|z
fg
, z

bg) = ↵p✓(x|z
fg) + (1� ↵)p✓(x|z

bg) (1)

, where ✓ is the parameters of the generative network, ↵ is the foreground mixing probability.

Foreground The foreground image component is modeled as a Gaussian distribution p(x|zfg) ⇠
N (µfg

,�
fg). It is represented as structured latents. Concretely, the image is divided into H ⇥W

cells, and each cell represents a potential foreground object. Each cell is associated with a set of
latent variables {z

pres
i , z

where
i , z

depth
i , z

what
i }. The underlying idea is similar to RCNN [18] and

YOLO [17]. zpres 2 R is a binary random variable indicating the presence of the object in the cell.
z
what models the object appearance and mask, and z

depth
2 R indicates the relative depth of the

object. zwhere
2 R

4 parameterizes the object bounding box. For each cell that zpresi = 1, SPACE
uses zwhat

i to decode the object reconstruction and its mask. The object reconstruction is positioned
on a full-resolution canvas using z

where
i via the Spatial Transformer Network [8]. The object depth

z
depth
i is then used to fuse all the object reconstructions into a single foreground image reconstruction
µ
fg . In practice, �fg is treated as a hyperparameter.

Improvement: Bounding Box Parameterization As illustrated in [13], SPACE [12] is somehow
unstable to train and sensitive to some hyperparameters, e.g., prior object sizes. In the original paper,
z
where is decomposed into two latent logits zshift and z

scale, activated by tanh and sigmoid, which
represent the shift and scale of the bounding box respectively. Thus, to change the prior size of

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

ar
X

iv
:2

01
1.

00
97

1v
1

 [c
s.C

V
]

26
 O

ct
 2

02
0

objects, it is required to tune those non-intuitive logits. Besides, the scale z
scale is relative to the

whole image instead of the cell, which makes the model more fragile.

In our implementation, following R-CNN [18], we reparameterize the bounding box (xctr, yctr, w, h)
as an offset (dx, dy, dw, dh) relative to a pre-defined anchor (xa, ya, wa, ha) centered at the cell. For
simplification, we associate each cell with only one anchor. It can be easily extended to multiple
anchors per cell [18] or multiple levels [11]. Eq 2 illustrates the formula of the ‘bounding-box
regression’ reparameterization.

dx = (xctr � xa)/wa

dy = (yctr � ya)/ha

dw = log((w � wa)/wa)

dh = log((h� ha)/ha)

(2)

Compared to the original implementation, ours supports more intuitive interpretation of the hyper-
parameters related to the bounding box. The priors of (dx, dy, dw, dh) can be simply modeled as
zero-mean Gaussian distributions. And the variances of Gaussian distributions can be tuned to control
how much the bounding box can be different from the anchor.

Improvement: Background In the original paper [12], the background is modeled as a sequence
of segments by GENESIS [4]. From our experiments, we find that the key to design a background
module is its capacity. Thus, it is not necessary to use complex and expensive models, e.g., MONet [2],
GENESIS [4], IODINE [7], especially for the RL applications. It is even not necessary to use a VAE.
By using a much simpler background module, our improved SPACE model can be easily trained with
a single GPU and a higher, unified learning rate, which results in faster convergence. In contrast,
the default configuration of SPACE requires 4 GPUs to train, separate learning rates for different
modules, and other sophisticated tricks (fixed ↵ at the beginning of training).

Inference and Training All the random variables follow Gaussian distributions, except for zpres
follows a Concrete distribution [14]. As the model is a variational autoencoder (VAE), the reparame-
terization trick [9] is used to optimize the ELBO.

3 Multi-MNIST

3.1 Self-supervised Object Detector

SPACE [12] consists of several modules: foreground image encoder, glimpse encoder, glimpse
decoder, background image encoder, background image decoder. We refer readers to [12] for detailed
explanation of each module. For the glimpse of each object, we apply the spatial transformer
network [8] (STN) to crop a patch from the image according to the bounding box and resize it to
14x14. Table 1 shows the architecture of the object detector used in the experiments. Table 2 shows
the hyperparameters of the object detector.

3.2 Policy GNN

Network Architectures In the Multi-MNIST experiment, the policy GNN is implemented as
PointConv [20] in Pytorch Geometric [6]. The input graph is an empty graph (without edges). Each
node corresponds to a detected object and the node feature is an embedded image feature ximg . We
apply the STN to crop a patch from the image according to the bounding box and resize it to 16x16,
and then we encode the patch by a CNN to get ximg . The CNN encoder is denoted by Image Patch

Encoder. Note that the bias terms are removed in the fully connected layers after the global readout
function. Table 3 shows the architecture of GNN and image patch encoder used in Multi-MNIST
experiments.

Hyperparameters in Training When training the GNN, the batch size is 64. The initial learning
rate is 0.001, and is divided by 2 every 100K gradient updates. The network is trained with the Adam
optimizer for 500K gradient updates.

2

Foreground Image Encoder
Layer Resolution Stride Norm./Act.

Input 54x54x3
Conv 3x3 54x54x64 1 BN/ReLU
Conv 3x3 18x18x64 3 BN/ReLU
Conv 3x3 18x18x128 1 BN/ReLU
Conv 3x3 6x6x128 3 BN/ReLU
Conv 3x3 6x6x256 1 BN/ReLU
Conv 1x1 6x6x128 1 BN/ReLU
Conv 1x1 6x6x128 1 BN/ReLU

Conv 1x1
6x6x1 (object presence zpres) 1 Sigmoid
6x6x4 (bounding box mean zwhere) 1
6x6x4 (bounding box stdev zwhere) 1 Softplus

Glimpse Encoder
Layer Resolution Norm./Act.

Input 14x14x3
Flatten 588
Linear 256 GN(16)/ReLU
Linear 256 GN(16)/ReLU

Linear 50 (mean zwhat)
50 (stdev zwhat) Softplus

Glimpse Decoder
Layer Resolution Norm./Act.

Input 50
Linear 256 GN(16)/ReLU
Linear 256 GN(16)/ReLU
Linear 784 Sigmoid
Reshape 14x14x4

Background Image Encoder
Layer Resolution Stride Norm./Act.

Input 54x54x3
Conv 3x3 54x54x64 1 BN/ReLU
Conv 3x3 18x18x64 3 BN/ReLU
Conv 3x3 18x18x128 1 BN/ReLU
Conv 3x3 6x6x128 3 BN/ReLU
Conv 3x3 6x6x256 1 BN/ReLU
Maxpool 256

Background Image Decoder
Layer Resolution Norm./Act.

Linear 256 BN/ReLU
Linear 256 BN/ReLU
Linear 8478 Sigmoid
Reshape 54x54x3

Table 1: The architecture of the self-supervised object detector for all the experiments on Multi-
MNIST.

3.3 Baselines

Network Architectures Table 4 shows the architecture of the plain CNN used in the experiments
on Multi-MNIST. The Relation Net shares the same CNN backbone with the plain CNN. For the
Relation Net, following [21], we add a relation module after the final feature map by a residual
connection. The architecture of the relation module is illustrated in Table 5. For these baselines,
the last CNN feature map is flattened and a multi-layer perceptron (MLP) is applied to get the final
output. Other design choices, e.g., max pooling over the last feature map, are investigated and the
quantitative results are shown in Table 6.

Hyperparameters in Tranining All the baseline CNNs are trained with the Adam optimizer for
500K steps. The initial learning rate is also 0.001, and is divided by 2 every 100K steps.

3

Name Value Schedule

max iteration 100K
optimizer Adam
batch size 64
learning rate 1e-3
gradient clip 1.0
zpres prior 0.1 ! 0.01 10K ! 50K
zpres temperature 2.0 ! 0.1 10K ! 50K
zwhere prior mean 0
zwhere prior stdev 0.2
zwhat prior mean 0
zwhat prior stdev 1.0
zwhat dimension 50
zdepth prior mean 0
zdepth prior stdev 1.0
zdepth scale 10.0
fg recon prior stdev 0.15
bg recon prior stdev 0.15

Table 2: The hyperparameters of the self-supervised object detector for all the experiments on
Multi-MNIST.

Image Patch Encoder
Layer Resolution Stride Norm./Act.

Input 16x16x3
Conv 3x3 16x16x32 1 ReLU
Maxpool 2x2 8x8x32 2
Conv 3x3 8x8x64 1 GN(4)/ReLU
Maxpool 2x2 4x4x64 2
Conv 3x3 4x4x128 1 GN(8)/ReLU
Maxpool 2x2 2x2x128 2
Conv 3x3 2x2x256 1 GN(16)/ReLU
Maxpool 2x2 1x1x256 2

GNN
Layer Resolution Norm./Act.

Input Nx256
Global Maxpool 256
Linear (no bias) 512 ReLU
Linear (no bias) 512 ReLU
Linear 1

Table 3: The architecture of GNN and image patch encoder used in the experiments on Multi-MNIST.
N denotes the number of nodes in a graph. Note that we use an empty graph here.

Layer Resolution Stride Norm./Act.

Input 54x54x3
Conv 3x3 54x54x64 1 BN/ReLU
Conv 3x3 18x18x64 3 BN/ReLU
Conv 3x3 18x18x128 1 BN/ReLU
Conv 3x3 6x6x128 3 BN/ReLU
Conv 3x3 6x6x256 1 BN/ReLU

Flatten 9216
Linear (no bias) 512 ReLU
Linear (no bias) 512 ReLU
Linear 1

Table 4: The architecture of the plain CNN used in the experiments on Multi-MNIST.

4

Layer Resolution Stride Norm./Act.

Key encoder
Input 6x6x256
Conv 1x1 6x6x256 1 GN(4)/ReLU
Conv 1x1 6x6x64 1

Query encoder
Input 6x6x256
Conv 1x1 6x6x256 1 GN(4)/ReLU
Conv 1x1 6x6x64 1

Layer Resolution Stride Norm./Act.

Value encoder
Input 6x6x256
Conv 1x1 6x6x256 1 GN(4)/ReLU
Conv 1x1 6x6x256 1 GN(4)/ReLU

Post-attention Encoder
Input 6x6x256
Conv 1x1 6x6x256 1 GN(4)/ReLU
Conv 1x1 6x6x256 1 GN(4)/ReLU

Table 5: The architecture of the relational module (4 heads) of relation netwrok used in the experiments
on Multi-MNIST.

Method Train Acc Test Acc

CNN(flatten) 92.0(1.7) 30.7(4.9)

CNN(max pooling) 90.3(1.5) 20.2(3.6)
CNN(sum pooling) 91.0(0.9) 5.7(3.4)

(a) Multi-MNIST-CIFAR

Method Train Acc Test Acc

CNN(flatten) 90.5(2.9) 12.0(2.1)

CNN(max pooling) 83.1(0.7) 9.74(0.4)
CNN(sum pooling) 84.2(0.9) 10.2(1.8)

(b) Multi-MNIST-ImageNet

Table 6: Quantitative results of different design choices for the plain CNN on Multi-MNIST. The
average with the standard deviation (in the parentheses) over 5 trials is reported.

4 FallingDigit

4.1 Environment Details

The foreground (digit) images are randomly selected from the MNIST dataset. For each digit, we
only use one fixed image instance. The background images are either black or random selected from
a subset in CIFAR-10 [10] dataset, and this subset contains 100 random selected images. All the
foreground and background images are shared across the training and test environments.

4.2 Demonstration Acquisition

We train a CNN-based DQN to acquire the teacher policy, which is used to interact with the
FallingDigit environment with three target digits to collect the demonstration dataset. During
the interaction, we use the greedy policy derived from the Q function, i.e., ⇡(s) = argmaxa Q(s, a).
The demonstration dataset includes 60,000 images and each image is labeled with Q(s, a) for all
actions calculated by the teacher policy.

4.3 Self-supervised Object Detector

The self-supervised object detector is trained on the collected demonstration dataset. For the glimpse
of each object, we apply the STN to crop a patch from the image according to the bounding box
and resize it to 16x16. Table 7 shows the architecture of the object detector used in the experiments.
For FallingDigit-Black, the background encoder and decoder are removed. Table 8 shows the
hyperparameters of the object detector.

5

Foreground Image Encoder
Layer Resolution Stride Norm./Act.

Input 128x128x3
Conv 3x3 128x128x16 1 BN/ReLU
Maxpool 64x64x16 2
Conv 3x3 64x64x32 1 BN/ReLU
Maxpool 32x32x32 2
Conv 3x3 32x32x64 1 BN/ReLU
Maxpool 16x16x64 2
Conv 3x3 16x16x128 1 BN/ReLU
Conv 1x1 16x16x128 1 BN/ReLU
Conv 1x1 16x16x128 1 BN/ReLU

Conv 1x1
16x16x1 (object presence zpres) 1 Sigmoid
16x16x4 (bounding box mean zwhere) 1
16x16x4 (bounding box stdev zwhere) 1 Softplus

Glimpse Encoder
Layer Resolution Stride Norm./Act.

Input 16x16x3
Conv 1x1 16x16x16 1 ReLU
Maxpool 8x8x32 2
Conv 1x1 8x8x32 1 ReLU
Maxpool 4x4x32 2
Conv 1x1 4x4x64 1 ReLU
Maxpool 2x2x64 2
Conv 1x1 2x2x128 1 ReLU
Maxpool 1x1x128 2

Linear 50 (mean zwhat)
50 (stdev zwhat) Softplus

Glimpse Decoder
Layer Resolution Stride Norm./Act.

Input 1x1x50
Deconv 2x2 2x2x128 2 ReLU
Conv 1x1 2x2x64 1 ReLU
Deconv 2x2 4x4x64 2 ReLU
Conv 1x1 4x4x32 1 ReLU
Deconv 2x2 8x8x32 2 ReLU
Conv 1x1 8x8x16 1 ReLU
Upsample 2x2 16x16x16 2
Conv 1x1 16x16x4 1

Background Image Encoder
Layer Resolution Stride Norm./Act.

Input 128x128x3
Conv 3x3 128x128x32 1 BN/ReLU
Maxpool 2x2 64x64x32 2
Conv 3x3 64x64x32 1 BN/ReLU
Maxpool 2x2 32x32x32 2
Conv 3x3 32x32x32 1 BN/ReLU
Maxpool 2x2 16x16x32 2
Conv 3x3 16x16x32 1 BN/ReLU
Maxpool 2x2 8x8x32 2

Background Image Decoder
Layer Resolution Stride Norm./Act.

Input 8x8x32
Deconv 2x2 16x16x32 2 BN/ReLU
Conv 3x3 16x16x32 1 BN/ReLU
Deconv 2x2 32x32x32 2 BN/ReLU
Conv 3x3 32x32x32 1 BN/ReLU
Deconv 2x2 64x64x32 2 BN/ReLU
Conv 3x3 64x64x32 1 BN/ReLU
Upsample 2x2 128x128x32 2
Conv 3x3 128x128x32 1 BN/ReLU
Conv 1x1 128x128x3 1

Table 7: The architecture of the self-supervised object detector for all the experiments on FallingDigit.

6

Name Value Schedule

max iteration 100K
optimizer Adam
batch size 8
learning rate 1e-3
gradient clip 1.0
zpres prior 0.1 ! 0.005 0 ! 50K
zpres temperature 2.5 ! 0.5 0 ! 50K
zwhere prior mean 0
zwhere prior stdev 0.2
zwhat prior mean 0
zwhat prior stdev 1.0
zwhat dimension 50
zdepth prior mean 0
zdepth prior stdev 1.0
zdepth scale 10.0
fg recon prior stdev 0.15
bg recon prior stdev 0.1 (Black) / 0.15 (CIFAR)

Table 8: The hyperparameters of the self-supervised object detector for all the experiments on
FallingDigit. Note that the background module is disabled for FallingDigit-Black.

4.4 Policy GNN

Network Architectures In the experiments on FallingDigit, the policy GNN is implemented as
EdgeConv [20] in PyTorch Geometric [6]. The input graph is a complete graph, i.e., the edge set is
{(i, j)|i, j 2 {1..n}} including self-loops, where i, j are node indices. Each node corresponds to a
detected object and the node feature includes an embedded image feature ximg and the bounding
box of the object xbox. To get ximg, we crop an image patch from the original image according
to the bounding box, and resize it to 16x16, and then encode it by an image patch encoder. We
concatenate ximg and xbox to get the node features and pass them into the GNN. The edge feature is
the concatenation of the feature of the sender node, and the difference between the features of the
sender and receiver nodes. Table 9 shows the architecture of GNN and image patch encoder used in
FallingDigit experiments.

Hyperparameters in Refactorization When training the GNN, the batch size is 64. The initial
learning rate is 0.001, and is divided by 2 every 100K gradient updates. The network is trained with
the Adam optimizer for 200K gradient updates.

Image Patch Encoder
Layer Resolution Stride Norm./Act.

Input 16x16x3
Conv 3x3 16x16x16 1 ReLU
Maxpool 2x2 8x8x16 2
Conv 3x3 8x8x32 1 ReLU
Maxpool 2x2 4x4x32 2
Conv 3x3 4x4x64 1 GN(4)/ReLU
Maxpool 2x2 2x2x64 2
Conv 3x3 2x2x128 1 GN(8)/ReLU
Maxpool 2x2 1x1x128 2

GNN
Layer Resolution Norm./Act.

Input Nx(128+4)
Message Passing Ex(128+4)x2
Linear Ex128 GN(8)/ReLU
Linear Ex128 GN(8)/ReLU
Max Aggregation Nx128
Linear Nx128 GN(8)/ReLU
Linear Nx128 GN(8)/ReLU
Global Maxpool 128
Linear 128 ReLU
Linear 128 ReLU
Linear 3

Table 9: The architecture of GNN and image patch encoder used in FallingDigit. N denotes the
number of nodes in a graph, and E denotes the number of edges in a graph. We use complete graph
here.

7

4.5 Baselines

Network Architectures The architecture of plain CNN is illustrated in Table 10. For the Relation
Net [21], we follow most of the design choices described in the original paper. We add a relational
module at the 8x8 feature map. The relation module is the same as that used in Multi-MNIST, except
that the resolution is 8x8.

Layer Resolution Stride Norm./Act.

Input 128x128x3
Conv 3x3 128x128x16 1 ReLU
Maxpool 64x64x16 2
Conv 3x3 64x64x16 1 ReLU
Maxpool 32x32x16 2
Conv 3x3 32x32x32 1 ReLU
Maxpool 16x16x32 2
Conv 3x3 16x16x64 1 ReLU
Maxpool 8x8x64 2
Conv 3x3 8x8x128 1 ReLU
Maxpool 4x4x128 2
Conv 1x1 4x4x128 1 ReLU
Global Maxpool 128
Linear 256 ReLU
Linear 3 ReLU

Table 10: The architecture of plain CNN used in FallingDigit.

Hyperparameters in Tranining We use DQN [15] to train all the baselines. The related hyperpa-
rameters are listed in the Table 11.

Name Value Schedule

max iteration 10M
optimizer Adam
learning rate 1e-4
gradient clip 10.0
✏-greedy 1.0 ! 0.1 0 ! 300K
image normalizer divide by 255
stacked frames 1
target net update frequency 500 steps
replay buffer size 100K
discount factor 0.99
training frequency 4 steps
batch size 32
double Q Yes

Table 11: The hyperparameters for training DQN on FallingDigit.

4.6 Evaluation Method

We train our GNN-based policy and all the baselines on the environment with three target digits and
test them on the environments with more target digits. When evaluating all the policies, we take the
best action suggested by the policy, i.e., ⇡eval(s) = argmaxa Q(s, a). Since the environments are
stochastic (the positions of all digits are random), we evaluate every policy on every environment for
1000 episodes and calculate the mean episode reward.

8

5 BigFish

5.1 Environment Details

Different from the original BigFish game, we modify the source code to add new background images
to create test environments. To be more specific, we use the "Background-1.png", "Background-
2.png", "Background-3.png" and "Background-4.png" from the "space-backgounds" directory in the
ProcGen [3] source code. These background images are shown in Fig 1.

Figure 1: Background images used in BigFish test environments.

5.2 Demonstration Acquisition

To make our RL agent perform well in the test environment, it is important to train it on a diverse
set of states which can cover most of states that might be encountered in the environments. In the
BigFish environment, we found that if we simply use the best action suggested by the teacher policy,
the demonstration dataset would only cover the states along the optimal trajectories, which are only a
small portion of all feasible states. For example, in the optimal trajectories, the player will never get
too close to the fishes that are bigger than the player itself. But in the testing environment, this may
happen and our agent needs to know how to react in these states.

Therefore, we introduce ✏-greedy exploration [15] to increase the diversity of states. Since our
teacher policy is trained by PPO [19], the output of the teacher policy is a categorical distribution
over 15 discrete actions. When we apply ✏-greedy strategy, the agent will take a random action with
probability ✏, otherwise, the agent will take a action suggested by the teacher policy (sampled from
the categorical distribution). We collect demonstration from every level in the training set (level 0 to
200), and for each level we run the teacher policy multiple times.

We combine the datasets collected with different values of ✏ and the details are listed in Table 12.
Since we run the experiments several times and collect several demonstration datasets, the size of the
datasets vary. But we report a rough number of the sizes. The size of our combined demonstration
dataset is around 800K.

✏ # of trials in each level dataset size

0.5 5 ⇠ 350k
0.3 3 ⇠ 300k
0 1 ⇠ 150k

Table 12: Composition of the demonstration dataset for BigFish

5.3 Self-supervised Object Detector

The self-supervised object detector is trained on a subset of the collected demonstration dataset,
which consists of 60,000 images. The setting is similar to that of Multi-MNIST. For the glimpse
of each object, we apply the STN to crop a patch from the image according to the bounding box
and resize it to 8x8. Table 13 shows the architecture of the object detector used in the experiments.
Table 14 shows the hyperparameters of the object detector.

9

Foreground Image Encoder
Layer Resolution Stride Norm./Act.

Input 64x64x3
Conv 3x3 64x64x64 1 BN/ReLU
Maxpool 2x2 32x32x64 2
Conv 3x3 32x32x128 1 BN/ReLU
Maxpool 2x2 16x16x128 2
Conv 3x3 16x16x256 1 BN/ReLU
Maxpool 2x2 8x8x256 2
Conv 1x1 8x8x256 1 BN/ReLU
Conv 1x1 8x8x256 1 BN/ReLU

Conv 1x1
8x8x1 (object presence zpres) 1 Sigmoid
8x8x4 (bounding box mean zwhere) 1
8x8x4 (bounding box stdev zwhere) 1 Softplus

Glimpse Encoder
Layer Resolution Norm./Act.

Input 8x8x3
Flatten 192
Linear 256 GN(16)/ReLU
Linear 256 GN(16)/ReLU

Linear 32
32 Softplus

Glimpse Decoder
Layer Resolution Norm./Act.

Input 32
Linear 256 GN(16)/ReLU
Linear 256 GN(16)/ReLU
Linear 256 Sigmoid
Reshape 8x8x4

Background Image Encoder
Layer Resolution Stride Norm./Act.

Input 64x64x3
Conv 3x3 64x64x64 1 BN/ReLU
Maxpool 2x2 32x32x64 2
Conv 3x3 32x32x128 1 BN/ReLU
Maxpool 2x2 16x16x128 2
Conv 3x3 16x16x256 1 BN/ReLU
Maxpool 2x2 8x8x256 2
Conv 1x1 8x8x256 1 BN/ReLU

Background Image Decoder
Layer Resolution Norm./Act.

Input 256
Linear 256 BN/ReLU
Linear 256 BN/ReLU
Linear 12288 Sigmoid
Reshape 64x64x3

Table 13: The architecture of the self-supervised object detector for all the experiments on BigFish.

Name Value Schedule

max iteration 100K
optimizer Adam
batch size 32
learning rate 1e-3
gradient clip 1.0
zpres prior 0.15 ! 0.05 10K ! 50K
zpres temperature 2.5 ! 0.5 10K ! 50K
zwhere prior mean 0
zwhere prior stdev 0.3
zwhat prior mean 0
zwhat prior stdev 1.0
zwhat dimension 32
zdepth prior mean 0
zdepth prior stdev 1.0
zdepth scale 10.0
fg recon prior stdev 0.15
bg recon prior stdev 0.15

Table 14: The hyperparameters of the self-supervised object detector for all the experiments on
BigFish.

10

5.4 Data Augmentation

We find that data augmentation is helpful to the generalization of object-centric GNN policy in
the BigFish environment. Specifically, the detection threshold in SPACE is usually set 0.1 in this
paper. But here we randomly select 30% of the object proposals (around 18 proposals) the has
lower confidence score than the detection threshold and add them to the detection results. This data
augmentation trick makes our object-centric GNN policy more robust to the false positive detections
in the test environments. And this kind of data augmentation is not feasible for the CNN and Relation
Net baselines.

5.5 Policy GNN

Network Architectures In the BigFish experiment, the policy GNN is implemented as Edge-
Conv [20] in PyTorch Geometric [6]. The input graph is a complete graph, i.e., the edge set is
{(i, j)|i, j 2 {1..n}, i 6= j}, where i, j are node indices. Each node corresponds to a detected object
and the node feature includes an embedded image feature ximg and the position of the object xpos.
To get ximg , we crop a 12x12 image patch from the original image according to the position of the
object and encode it by an image patch encoder. And the xpos is a 2-dim vector which represents
the coordinates of the center of the object bounding box. We concatenate ximg and xpos to get the
node features and pass them into the GNN. The edge feature is the concatenation of the feature of the
sender node, and the difference between the features of the sender and receiver node. Table 15 shows
the detailed architecture of GNN and image patch encoder used in BigFish experiments.

Image Patch Encoder
Layer Resolution Stride Act.

Input 12x12x3
Conv 3x3 10x10x32 1 ReLU
Conv 3x3 8x8x64 1 ReLU
Conv 8x1 1x8x64 1 ReLU
Flatten 512
Linear 512 ReLU
Linear 512

GNN
Layer Resolution Act.

Input Nx(512+2)
Message Passing Ex(514x2) ReLU
Linear Ex1024 ReLU
Linear Ex512
Max Aggregation Nx512
Global Maxpool 512
Linear 15

Table 15: The architecture of GNN and image patch encoder used in BigFish. N denotes the number
of nodes in a graph, and E denotes the number of edges in a graph. We use complete graph here.

Hyperparameters in Refactorization When training the GNN, the batch size is 128. The initial
learning rate is 8e-4, reduced to 8e-5 at the 560K-th gradient updates, and then reduced to 8e-6 at
the 750K-th gradient updates. The network is trained with the Adam optimizer for 1150K gradient
updates.

5.6 Baselines

Network Architectures The CNN baseline is implemented according to the CNN architecture used
in IMPALA [5], which is suggested by the ProcGen paper [3]. For the Relation Net [21] baseline, we
use the same convolutional layers with IMPALA CNN, except we concatenate the spatial coordinates
to the feature map as described in [21]. Then, we add a relational module after the final feature map
by a residual connection. The architecture of the relation module is illustrated in Table 16. The output
module of Relation Net is a flatten operator followed by a 2-layer MLP with hidden units of 256.

Hyperparameters in Training We use PPO [19] to train all the baselines and use the same
hyperparameters with the ProcGen paper [3], except that we use the easy mode of the game and train
200M frames.

5.7 Evaluation Method

We train our GNN-based policy and all the baselines on level 0-199 and test them on level 200- 399.
When evaluating all the policies, we take the best action suggested by the policy, i.e., ⇡eval(s) =

11

Layer Resolution Stride Norm./Act.

Key encoder
Input 8x8x64
Conv 1x1 8x8x64 1 LN/ReLU
Conv 1x1 8x8x64 1

Query encoder
Input 8x8x64
Conv 1x1 8x8x64 1 LN/ReLU
Conv 1x1 8x8x64 1

Layer Resolution Stride Norm./Act.

Value encoder
Input 8x8x64
Conv 1x1 8x8x64 1 LN/ReLU
Conv 1x1 8x8x64 1 LN/ReLU

Post-attention Encoder
Input 8x8x64
Conv 1x1 8x8x64 1 LN/ReLU
Conv 1x1 8x8x64 1 LN/ReLU

Table 16: The architecture of the relational module of Relation Net used in the experiments on
BigFish. LN indicates Layer Normalization [1].

argmaxa ⇡(a|s) , instead of sampling from the categorical distribution. We evaluate every policy
on every level from 200 to 399 once and calculate the mean episode reward. Since the environment
is deterministic given the level index, and the policies are also deterministic by taking argmax,
evaluating once is sufficient.

6 Pacman

6.1 Demonstration Acquisition

We train a CNN-based DQN to acquire the teacher policy, which is used to interact with the Pacman
environment with two dots (food) to collect the demonstration dataset. During the interaction, we use
the greedy policy derived from the Q function, i.e., ⇡(s) = argmaxa Q(s, a). The demonstration
dataset includes 60,000 images and each image is labeled with Q(s, a) for all actions calculated by
the teacher policy. According to our experiment results, this demonstration dataset is good enough
for learning a GNN-based student policy which can generalize to the environments with more dots.

6.2 Self-supervised Object Detector

The self-supervised object detector is trained on the collected demonstration dataset. The setting is
similar to that of Multi-MNIST. For the glimpse of each object, we apply the STN to crop a patch
from the image according to the bounding box and resize it to 8x8. Table 17 shows the architecture
of the object detector used in the experiments. Table 18 shows the hyperparameters of the object
detector.

6.3 Policy GNN

Network Architectures In the experiments on Pacman, the policy GNN is implemented as Point-
Conv [16] in Pytorch Geometric [6]. The input graph is a complete graph, i.e., the edge set is
{(i, j)|i, j 2 {1..n}} including self-loops, where i, j are node indices. Each node corresponds to a
detected object and the node feature includes an embedded image feature ximg and the bounding box
of the object xbox. To get ximg, we crop an image patch from the original image according to the
bounding box, and resize it to 8x8, and then encode it by an image patch encoder. We concatenate
ximg and xbox to get the node features and pass them into the GNN. The edge feature is the con-
catenation of the features of the sender node, and the difference between the bounding box position
and size of the sender and receiver node. Table 19 shows the architecture of GNN and image patch
encoder used in Pacman experiments.

Hyperparameters in Refactorization When training the GNN, the batch size is 64. The initial
learning rate is 0.001, and is divided by 2 every 100K gradient updates. The network is trained with
the Adam optimizer for 500K gradient updates.

12

Foreground Image Encoder
Layer Resolution Stride Norm./Act.

Input 64x64x3
Conv 3x3 64x64x32 1 BN/ReLU
Conv 2x2 32x32x32 2 BN/ReLU
Conv 3x3 32x32x64 1 BN/ReLU
Conv 2x2 16x16x128 2 BN/ReLU
Conv 1x1 16x16x128 1 BN/ReLU
Conv 1x1 16x16x128 1 BN/ReLU

Conv 1x1
16x16x1 (object presence zpres) 1 Sigmoid
16x16x4 (bounding box mean zwhere) 1
16x16x4 (bounding box stdev zwhere) 1 Softplus

Glimpse Encoder
Layer Resolution Stride Norm./Act.

Input 8x8x3
Conv 1x1 8x8x32 1 GN(4)/ReLU
Maxpool 4x4x32 2
Conv 1x1 4x4x64 1 GN(4)/ReLU
Maxpool 2x2x64 2
Conv 1x1 2x2x128 1 GN(8)/ReLU
Maxpool 1x1x128 2

Linear 32
32 Softplus

Glimpse Decoder
Layer Resolution Stride Norm./Act.

Input 1x1x32
Deconv 2x2 2x2x128 2 GN(8)/ReLU
Conv 1x1 2x2x64 1 GN(4)/ReLU
Deconv 2x2 4x4x64 2 GN(4)/ReLU
Conv 1x1 4x4x32 1 GN(4)/ReLU
Deconv 2x2 8x8x32 2 GN(4)/ReLU
Conv 1x1 8x8x16 1 GN(4)/ReLU
Conv 1x1 8x8x4 1

Background Image Encoder
Layer Resolution Stride Norm./Act.

Input 64x64x3
Conv 3x3 64x64x32 1 BN/ReLU
Maxpool 2x2 32x32x32 2
Conv 3x3 32x32x32 1 BN/ReLU
Maxpool 2x2 16x16x32 2
Conv 3x3 16x16x32 1 BN/ReLU
Maxpool 2x2 8x8x32 2
Conv 3x3 8x8x32 1 BN/ReLU
Maxpool 2x2 4x4x32 2

Background Image Decoder
Layer Resolution Stride Norm./Act.

Input 4x4x32
Deconv 2x2 8x8x32 2 BN/ReLU
Conv 1x1 8x8x32 1 BN/ReLU
Deconv 2x2 16x16x32 2 BN/ReLU
Conv 1x1 16x16x32 1 BN/ReLU
Deconv 2x2 32x32x32 2 BN/ReLU
Conv 1x1 32x32x32 1 BN/ReLU
Deconv 2x2 64x64x32 2 BN/ReLU
Conv 1x1 64x64x32 1 BN/ReLU
Conv 1x1 64x64x3 1

Table 17: The architecture of the self-supervised object detector for all the experiments on Pacman.

Image Patch Encoder
Layer Resolution Stride Norm./Act.

Input 8x8x3
Conv 3x3 8x8x32 1 ReLU
Maxpool 2x2 4x4x32 2
Conv 3x3 4x4x64 1 GN(4)/ReLU
Maxpool 2x2 2x2x64 2
Conv 3x3 2x2x128 1 GN(8)/ReLU
Maxpool 2x2 1x1x128 2

GNN
Layer Resolution Norm./Act.

Input Nx(128+4)
Message Passing Ex(128+4)
Linear Ex128 GN(8)/ReLU
Linear Ex128 GN(8)/ReLU
Linear Ex4
Sum Aggregation Nx4
Global Maxpool 4

Table 19: The architecture of GNN and image patch encoder used in Pacman. N denotes the number
of nodes in a graph, and E denotes the number of edges in a graph. We use complete graph here.

13

Name Value Schedule

max iteration 100K
optimizer Adam
batch size 8
learning rate 1e-3
gradient clip 1.0
zpres prior 0.1 ! 0.005 0 ! 50K
zpres temperature 2.5 ! 0.5 0 ! 50K
zwhere prior mean 0
zwhere prior stdev 0.2
zwhat prior mean 0
zwhat prior stdev 1.0
zwhat dimension 32
zdepth prior mean 0
zdepth prior stdev 1.0
zdepth scale 10.0
fg recon prior stdev 0.15
bg recon prior stdev 0.15

Table 18: The hyperparameters of the self-supervised object detector for all the experiments on
Pacman.

6.4 Baselines

Network Architectures The architecture of plain CNN is illustrated in Table 20. For the Relation
Net [21], we follow most of the design choices described in the original paper. In our implementation,
the input module of the Relation Net is the same as the convolutional layers used in the CNN baseline,
except we concatenate the spatial coordinates to the feature map as described in [21]. Then we add a
relational module after the final feature map by a residual connection. The architecture of the relation
module is illustrated in Table 21. The output module of Relation Net is a feature-wise max pooling
layer followed by a 2-layer MLP with hidden units of 256.

Layer Resolution Stride Norm./Act.

Input 64x64x3
Conv 3x3 64x64x16 1 ReLU
Maxpool 32x32x16 2
Conv 3x3 32x32x32 1 ReLU
Maxpool 16x16x32 2
Conv 3x3 16x16x64 1 ReLU
Maxpool 8x8x64 2
Conv 3x3 8x8x128 1 ReLU
Maxpool 4x4x128 2
Conv 1x1 4x4x128 1 ReLU
Global Maxpool 128
Linear 256 ReLU
Linear 4 ReLU

Table 20: The architecture of plain CNN used in Pacman.

Hyperparameters in Tranining We use DQN [15] to train all the baselines. The related hyperpa-
rameters are listed in the Table 22.

6.5 Evaluation Method

We train our GNN-based policy and all the baselines on the environment with two dots and test
them on the environments with more dots. When evaluating all the policies, we take the best action
suggested by the policy, i.e., ⇡eval(s) = argmaxa Q(s, a). Since the environments are stochastic
(the positions of Pacman and dots are random), we evaluate every policy on every environment for
100 episodes and calculate the mean episode reward.

14

Layer Resolution Stride Norm./Act.

Key encoder
Input 7x7x64
Conv 1x1 7x7x64 1 LN/ReLU
Conv 1x1 7x7x64 1

Query encoder
Input 7x7x64
Conv 1x1 7x7x64 1 LN/ReLU
Conv 1x1 7x7x64 1

Layer Resolution Stride Norm./Act.

Value encoder
Input 7x7x64
Conv 1x1 7x7x64 1 LN/ReLU
Conv 1x1 7x7x64 1 LN/ReLU

Post-attention Encoder
Input 7x7x64
Conv 1x1 7x7x64 1 LN/ReLU
Conv 1x1 7x7x64 1 LN/ReLU

Table 21: The architecture of the relational module of Relation Net used in the experiments on
Pacman. LN indicates Layer Normalization [1].

Name Value Schedule

max iteration 10M
optimizer Adam
learning rate 1e-4
gradient clip 10.0
✏-greedy 1.0 ! 0.1 0 ! 1M
image normalizer divide by 255
stacked frames 1
target net update frequency 500 steps
replay buffer size 300K
discount factor 0.99
training frequency 4 steps
batch size 32
double Q Yes

Table 22: The hyperparameters for training DQN on Pacman.

7 Robustness Analysis

In this section, we analyze the robustness of our two-stage refactorization framework, taking Pacman
environment as an example. And we compare our two-stage refactorization framework with the
end-to-end one-stage reinforcement learning method to show our framework is more robust to the
low-quality detectors.

7.1 Robustness w.r.t low-recall detectors

First, we conduct experiments to test how our refactorized GNN policy performs with a low-recall
detector. Since the recall/AP of our object detector on Pacman is quite high, we randomly removed
some detected objects to simulate the behaviours of a low-recall detector.

The detected objects are randomly removed in the demonstration dataset during training but are
not removed during testing. We experiment with three different ratios of removed objects: 10%,
50% and 90%. Surprisingly, it is observed that even 50% objects are removed, the policy GNN can
also imitate a reasonable policy from the demonstration dataset, and still generalizes well to the
environments with more dots. We argue that it results from both the nature of the game itself and the
robustness of our framework. Fig 2 illustrates the quantitative results.

In contrast, if we train our policy GNN with reinforcement learning (DQN) with 50% objects missing,
it cannot converges to a reasonable good solution.

15

Figure 2: Quantitative experiments of robustness test on Pacman. We randomly remove 10%, 50%
or 90% detected objects during training and report the test performance in the environments with
different number of dots.

7.2 Robustness w.r.t low-precision detectors

Second, we test whether our refactorized GNN policy is robust to a low-precision detector. Similar
to Sec 7.1, we simulate the behaviours of a low-precision detector by modifying a good detector.
Specifically, we randomly select 25 object proposals with confidence scores lower than the threshold,
which means they are not real objects, and add them to the detection results.

With such a low-precision detector, our refactorized GNN policy can still generalize well the en-
vironments with 10 dots (gets 8.29, averaged by 8 runs). In contrast, if we train our policy GNN
with reinforcement learning (DQN) with this low-recall detector, the resulting GNN policy cannot
consistently generalize to the environments with 10 dots (gets 4.43, averaged by 9 runs).

7.3 Summary

Through the above presented experiments, we find that our refactorized GNN is pretty robust w.r.t the
low-recall detectors and low-precision detectors in the Pacman environment. In contrast, training
the same object-centric GNN using reinforcement learning with low-quality detectors may lead to
optimization or generalization problems. This is one of the reasons that we choose to break the policy
learning problem into two stages instead of relying on end-to-end RL.

16

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint

arXiv:1607.06450, 2016.

[2] Christopher P Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins, Matt
Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition and representa-
tion. arXiv preprint arXiv:1901.11390, 2019.

[3] Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural
generation to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588, 2019.

[4] Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones, and Ingmar Posner. Genesis: Gener-
ative scene inference and sampling with object-centric latent representations. arXiv preprint

arXiv:1907.13052, 2019.

[5] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. arXiv preprint arXiv:1802.01561, 2018.

[6] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[7] Klaus Greff, Raphaël Lopez Kaufmann, Rishab Kabra, Nick Watters, Chris Burgess, Daniel
Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation
learning with iterative variational inference. arXiv preprint arXiv:1903.00450, 2019.

[8] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al. Spatial transformer networks. In
Advances in neural information processing systems, pages 2017–2025, 2015.

[9] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

[10] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, Citeseer, 2009.

[11] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 2117–2125, 2017.

[12] Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. Space: Unsupervised object-oriented scene representation via spatial
attention and decomposition. arXiv preprint arXiv:2001.02407, 2020.

[13] Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. Space: Unsupervised object-oriented scene representation via spatial
attention and decomposition. https://github.com/zhixuan-lin/SPACE, 2020.

[14] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

[15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[16] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In Advances in neural information processing

systems, pages 5099–5108, 2017.

[17] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 779–788, 2016.

[18] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural information processing

systems, pages 91–99, 2015.

[19] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

17

[20] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon. Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics

(TOG), 38(5):1–12, 2019.
[21] Vinicius Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor Babuschkin,

Karl Tuyls, David Reichert, Timothy Lillicrap, Edward Lockhart, et al. Deep reinforcement
learning with relational inductive biases. 2018.

18

